Cambridge
International
AS \& A Level

Cambridge Assessment International Education

Cambridge International Advanced Subsidiary and Advanced Level

MATHEMATICS

9709/13
Paper 1
MARK SCHEME
Maximum Mark: 75

Published

This mark scheme is published as an aid to teachers and candidates, to indicate the requirements of the examination. It shows the basis on which Examiners were instructed to award marks. It does not indicate the details of the discussions that took place at an Examiners' meeting before marking began, which would have considered the acceptability of alternative answers.

Mark schemes should be read in conjunction with the question paper and the Principal Examiner Report for Teachers.

Cambridge International will not enter into discussions about these mark schemes.
Cambridge International is publishing the mark schemes for the October/November 2017 series for most Cambridge IGCSE ${ }^{\circledR}$, Cambridge International A and AS Level components and some Cambridge O Level components.

Mark Scheme Notes

Marks are of the following three types:
M Method mark, awarded for a valid method applied to the problem. Method marks are not lost for numerical errors, algebraic slips or errors in units. However, it is not usually sufficient for a candidate just to indicate an intention of using some method or just to quote a formula; the formula or idea must be applied to the specific problem in hand, e.g. by substituting the relevant quantities into the formula. Correct application of a formula without the formula being quoted obviously earns the M mark and in some cases an M mark can be implied from a correct answer.

A Accuracy mark, awarded for a correct answer or intermediate step correctly obtained. Accuracy marks cannot be given unless the associated method mark is earned (or implied).

B Mark for a correct result or statement independent of method marks.

- When a part of a question has two or more "method" steps, the M marks are generally independent unless the scheme specifically says otherwise; and similarly when there are several B marks allocated. The notation DM or DB (or dep*) is used to indicate that a particular M or B mark is dependent on an earlier M or B (asterisked) mark in the scheme. When two or more steps are run together by the candidate, the earlier marks are implied and full credit is given.
- The symbol FT implies that the A or B mark indicated is allowed for work correctly following on from previously incorrect results. Otherwise, A or B marks are given for correct work only. A and B marks are not given for fortuitously "correct" answers or results obtained from incorrect working.
- Note: B2 or A2 means that the candidate can earn 2 or 0. $B 2 / 1 / 0$ means that the candidate can earn anything from 0 to 2.

The marks indicated in the scheme may not be subdivided. If there is genuine doubt whether a candidate has earned a mark, allow the candidate the benefit of the doubt. Unless otherwise indicated, marks once gained cannot subsequently be lost, e.g. wrong working following a correct form of answer is ignored.

- Wrong or missing units in an answer should not lead to the loss of a mark unless the scheme specifically indicates otherwise.
- For a numerical answer, allow the A or B mark if a value is obtained which is correct to 3 s.f., or which would be correct to 3 s.f. if rounded (1 d.p. in the case of an angle). As stated above, an A or B mark is not given if a correct numerical answer arises fortuitously from incorrect working. For Mechanics questions, allow A or B marks for correct answers which arise from taking g equal to 9.8 or 9.81 instead of 10.

The following abbreviations may be used in a mark scheme or used on the scripts:
AEF/OE Any Equivalent Form (of answer is equally acceptable)/ Or Equivalent
AG Answer Given on the question paper (so extra checking is needed to ensure that the detailed working leading to the result is valid)
CAO Correct Answer Only (emphasising that no "follow through" from a previous error is allowed)
CWO Correct Working Only - often written by a 'fortuitous' answer
ISW Ignore Subsequent Working
SOI Seen or implied
SR Special Ruling (detailing the mark to be given for a specific wrong solution, or a case where some standard marking practice is to be varied in the light of a particular circumstance)

Penalties

MR -1 A penalty of MR -1 is deducted from A or B marks when the data of a question or part question are genuinely misread and the object and difficulty of the question remain unaltered. In this case all A and B marks then become "follow through" marks. MR is not applied when the candidate misreads his own figures - this is regarded as an error in accuracy. An MR - 2 penalty may be applied in particular cases if agreed at the coordination meeting.

PA -1 This is deducted from A or B marks in the case of premature approximation. The $P A-1$ penalty is usually discussed at the meeting.

Question	Answer	Marks	Guidance
1	$1 / 2 n[-24+(n-1) 6] \sim 3000$ Note: \sim denotes any inequality or equality	M1	Use correct formula with RHS ≈ 3000 (e.g. 3010).
	(3) $\left(n^{2}-5 n-1000\right)(\sim 0)$	A1	Rearrange into a 3-term quadratic.
	$n \sim 34.2(\&-29.2)$	A1	
	35. Allow $n \geqslant 35$	A1	
		4	
2	$a x+3 a=-\frac{2}{x} \rightarrow a x^{2}+3 a x+2(=0)$	*M1	Rearrange into a 3-term quadratic.
	Apply $b^{2}-4 a c>0$ SOI	DM1	Allow \geqslant. If no inequalities seen, M1 is implied by 2 correct final answers in a or x.
	$a<0, a>\frac{8}{9} \text { (or 0.889) OE }$	A1 A1	For final answers accept $0>a>\frac{8}{9}$ but not \leqslant, \geqslant.
		4	

Question	Answer	Marks	Guidance
3(i)	$6 \mathrm{C} 3\left(\frac{2}{x}\right)^{3}(-3 x)^{3}$ SOI also allowed if seen in an expansion	M1	Both x^{\prime} s can be missing.
	-4320 Identified as answer	A1	Cannot be earned retrospectively in (ii).
		2	
3(ii)	6C2 $\left(\frac{2}{x}\right)^{4}[(-) 3 x]^{2} \quad$ SOI clearly identified as critical term	M1	Both x 's and minus sign can be missing.
	$15 a \times 16 \times 9-$ their $4320(=0)$	A1 FT	FT on their 4320.
	$a=2$	A1	
		3	

Question	Answer	Marks	Guidance
4	$\mathrm{f}^{\prime}(x)=\left[\left(\frac{3}{2}\right)(2 x-1)^{1 / 2}\right] \times[2]-[6]$	B2, 1, 0	Deduct 1 mark for each [...] incorrect.
	$\mathrm{f}^{\prime}(x)<0$ or $\leqslant 0$ or $=0 \quad$ SOI	M1	
	$(2 x-1)^{1 / 2}<2$ or $\leqslant 2$ or=2 OE	A1	Allow with k used instead of x
	Largest value of k is $\frac{5}{2}$	A1	Allow $k \leqslant \frac{5}{2}$ or $k=\frac{5}{2} \quad$ Answer must be in terms of $k(\operatorname{not} x)$
		5	

Question	Answer	Marks	Guidance
5(i)	$\cos \theta+4+5 \sin ^{2} \theta+5 \sin \theta-5 \sin \theta-5(=0)$	M1	Multiply throughout by $\sin \theta+1$. Accept if $5 \sin \theta-5 \sin \theta$ is not seen
	$5\left(1-\cos ^{2} \theta\right)+\cos \theta-1(=0)$	M1	Use $s^{2}=1-c^{2}$
	$5 \cos ^{2} \theta-\cos \theta-4=0 \quad$ AG	A1	Rearrange to AG
		3	
5(ii)	$\cos \theta=1$ and -0.8	B1	Both required
	$\theta=\left[0^{\circ}, 360^{\circ}\right], \quad\left[143.1^{\circ}\right], \quad\left[216.9^{\circ}\right]$	$\begin{array}{r} \text { B1 B1 B1 } \\ \text { FT } \end{array}$	Both solutions required for 1st mark. For 3rd mark FT for (360° - their 143.1°) Extra solution(s) in range (e.g. 180°) among 4 correct solutions scores $\frac{3}{4}$
		4	

Question	Answer	Marks	Guidance
6 6(i)	$y=\frac{2}{x^{2}-1} \Rightarrow x^{2}=\frac{2}{y}+1 \quad$ OE	M1	
	$x=(\pm) \sqrt{\frac{2}{y}+1}$ OE	A1	With or without x / y interchanged.
	$\mathrm{f}^{-1}(x)=-\sqrt{\frac{2}{x}+1}$ OE	A1	Minus sign obligatory. Must be a function of x.
		$\mathbf{3}$	

Question	Answer	Marks	Guidance
6(ii)	$\left(\frac{2}{x^{2}-1}\right)^{2}+1=5$	B1	
	$\begin{aligned} & \frac{2}{x^{2}-1}=(\pm) 2 \quad \text { OE } \quad \text { OR } \quad x^{4}-2 x^{2}=0 \quad \text { OE } \\ & x^{2}-1=(\pm) 1 \Rightarrow x^{2}=2(\text { or } 0) \\ & x=-\sqrt{2} \quad \text { or } \quad-1.41 \text { only } \end{aligned}$	B1	Condone $x^{2}=0$ as an additional solution
		4	

Question	Answer	Marks	Guidance
7(i)	$\sin ^{-1}\left(\frac{3}{5}\right)=0.6435 \quad \mathrm{AG}$	M1	$\text { OR }(P B C=) \cos ^{-1}\left(\frac{3}{5}\right)=0.9273 \Rightarrow(A B P=) \frac{\pi}{2}-0.9273=0.6435$ Or other valid method. Check working and diagram for evidence of incorrect method
7(ii)	Use (once) of sector area $=1 / 2 r^{2} \theta$	M1	
	Area sector $B A P=1 / 2 \times 5^{2} \times 0.6435=8.04$	A1	
	Area sector $D A Q=1 / 2 \times 1 / 2 \pi \times 3^{2}=7.07$, Allow $\frac{9 \pi}{4}$	A1	
		3	

Question	Answer	Marks	Guidance
7(iii)	EITHER: Region $=$ sect + sect $-($ rect $-\Delta)$ or sect $-[$ rect $-(\operatorname{sect}+\Delta)]$	(M1	Use of correct strategy
	$($ Area $\triangle B P C=) 1 / 2 \times 3 \times 4=6 \quad$ Seen	A1	
	$8.04+7.07-(15-6)=6.11$	A1)	
	$\begin{aligned} & O R 1: \\ & \text { Region }=\text { sector } A D Q-(\operatorname{trap} A B P D-\text { sector } A B P) . \end{aligned}$	(M1	Use of correct strategy
	$(\text { Area trap } A B P D=)^{1 / 2}(5+1) \times 3=9$ Seen	A1	
	$7.07-(9-8.04)=7.07-0.96=6.11$	A1)	
	OR2: Area segment $A P=2.5686 \quad$ Area segment $A Q=0.5438$ Region $=$ segment $A P+$ segment $A Q+\triangle A P Q$.	(M1	Use of correct strategy
	$($ Area $\triangle A P Q=$) $1 / 2 \times 2 \times 3=3 \quad$ Seen	A1	
	$2.57+0.54+3=6.11$	A1)	
		3	

Question	Answer	Marks	Guidance
8(i)	EITHER: $4-3 \sqrt{ } x=3-2 x \rightarrow 2 x-3 \sqrt{ } x+1(=0) \text { or e.g. } 2 k^{2}-3 k+1(=0)$	(M1	Form 3-term quad \& attempt to solve for $\sqrt{ } \times$.
	$\sqrt{x}=1 / 2,1$	A1	Or $k=1 / 2$ or $1($ where $k=\sqrt{ } x)$.
	$x=1 / 4,1$	A1)	
	OR1: $\left(3 \sqrt{x}^{2}=(1+2 x)^{2}\right.$	(M1	
	$4 x^{2}-5 x+1 \quad(=0)$	A1	
	$x=1 / 4,1$	A1)	
	OR2: $\frac{3-y}{2}=\left(\frac{4-y}{3}\right)^{2}\left(\rightarrow 2 y^{2}-7 y+5(=0)\right)$	(M1	Eliminate x
	$y=\frac{5}{2}, 1$	A1	
	$x=1 / 4,1$	A1)	
		3	

Question	Answer	Marks	Guidance
8(ii)	EITHER: Area under line $=\int(3-2 x) \mathrm{d} x=3 x-x^{2}$	(B1	
	$=\left[(3-1)-\left(\frac{3}{4}-\frac{1}{16}\right)\right]$	M1	Apply their limits (e.g. $1 / 4 \rightarrow 1$) after integn.
	Area under curve $=\int\left(4-3 x^{1 / 2}\right) \mathrm{d} x=4 x-2 x^{3 / 2}$	B1	
	$[(4-2)-(1-1 / 4)]$	M1	Apply their limits (e.g. $1 / 4 \rightarrow 1$) after integration.
	$\text { Required area }=\frac{21}{16}-\frac{5}{4}=\frac{1}{16}(\text { or } 0.0625)$	A1)	
	OR: $+/-\int(3-2 x)-\left(4-3 x^{\frac{1}{2}}\right)=+/-\int\left(-1-2 x+3 x^{\frac{1}{2}}\right)$	(*M1	Subtract functions and then attempt integration
	$+/-\left[-x-x^{2}+\frac{3 x^{3 / 2}}{3 / 2}\right]$	A2, 1, 0 FT	FT on their subtraction. Deduct 1 mark for each term incorrect
	$+/-\left[-1-1+2-\left(-\frac{1}{4}+\frac{1}{16}+\frac{1}{8}\right)\right]=\frac{1}{16}($ or 0.0625$)$	DM1 A1)	Apply their limits $1 / 4 \rightarrow 1$
		5	

Question	Answer	Marks	Guidance
9(i)	$\overrightarrow{A B}=+/-\left(\begin{array}{c}-18 \\ 9 \\ -18\end{array}\right), \quad \overrightarrow{B C}=+/-\left(\begin{array}{c}12 \\ -6 \\ 12\end{array}\right)$,	B1 B1	Allow $\mathbf{i}, \mathbf{j}, \mathbf{k}$ form throughout.
	$\|\overrightarrow{A B}\|=27, \quad\|\overrightarrow{B C}\|=18$	$\begin{aligned} & \text { B1 FT } \\ & \text { B1 FT } \end{aligned}$	FT on their $\overrightarrow{A B}$, their $\overrightarrow{O D}$.
	$\|\overrightarrow{C D}\|=\left(\frac{18}{27}\right) \times 18 \quad$ OR $\quad\left(\frac{18}{27}\right)^{2} \times 27=12$	B1	
		5	
9(ii)	$\overrightarrow{C D}=(\pm)$ their $\frac{18}{27} \times$ their $\overrightarrow{B C} \quad$ SOI	M1	Expect $(\pm)\left(\begin{array}{c}8 \\ -4 \\ 8\end{array}\right)$.
	$\overrightarrow{O D}=\left(\begin{array}{c}2 \\ -3 \\ -1\end{array}\right)(\pm)$ their $\frac{18}{27}\left(\begin{array}{c}12 \\ -6 \\ 12\end{array}\right)=\left(\begin{array}{c}10 \\ -7 \\ 7\end{array}\right),\left(\begin{array}{c}-6 \\ 1 \\ -9\end{array}\right)$	M1 A1 A1	Other methods possible for $\overrightarrow{O D}$, e.g. $\overrightarrow{O B}+\frac{5}{2} \overrightarrow{C D}, \overrightarrow{O B}+\frac{1}{2} \overrightarrow{C D}$ (One soln M2A1, 2nd soln A1) OR $\overrightarrow{O B}+\frac{5}{3} \overrightarrow{B C}, \overrightarrow{O B}+\frac{1}{3} \overrightarrow{B C}$ (One soln M2A1, 2nd soln A1)
		4	

Question	Answer	Marks	Guidance
10(i)	$a x^{2}+b x=0 \rightarrow x(a x+b)=0 \rightarrow x=\frac{-b}{a}$	B1	
	Find $\mathrm{f}^{\prime \prime}(x)$ and attempt sub their $\frac{-b}{a}$ into their $\mathrm{f}^{\prime \prime}(x)$	M1	
	When $x=\frac{-b}{a}, \mathrm{f} \prime \prime(x)=2 a\left(\frac{-b}{a}\right)+b=-b \quad$ MAX	A1	
		3	
10(ii)	Sub $\mathrm{f}^{\prime}(-2)=0$	M1	
	Sub $\mathrm{f}^{\prime}(1)=9$	M1	
	$a=3 \quad b=6$	*A1	Solve simultaneously to give both results.
	$\mathrm{f}^{\prime}(x)=3 x^{2}+6 x \rightarrow \mathrm{f}(x)=x^{3}+3 x^{2}(+c)$	*M1	Sub their a, b into $\mathrm{f}^{\prime}(x)$ and integrate 'correctly'. Allow $\frac{a x^{3}}{3}+\frac{b x^{2}}{2}(+c)$
	$-3=-8+12+c$	DM1	Sub $x=-2, y=-3$. Dependent on c present. Dependent also on a, b substituted.
	$\mathrm{f}(x)=x^{3}+3 x^{2}-7$	A1	
		6	

Question	Answer	Marks	Guidance
11(i)	Gradient of $A B=\frac{1}{2}$	B1	
	Equation of $A B$ is $y=\frac{1}{2} x-\frac{1}{2}$	B1	
		2	
11(ii)	$\frac{\mathrm{d} y}{\mathrm{~d} x}=1 / 2(x-1)^{-\frac{1}{2}}$	B1	
	$1 / 2(x-1)^{-\frac{1}{2}}=1 / 2$. Equate their $\frac{\mathrm{d} y}{\mathrm{~d} x}$ to their $1 / 2$	*M1	
	$x=2, y=1$	A1	
	$y-1=1 / 2(x-2)($ thro' their $(2,1) \&$ their $1 / 2) \rightarrow y=1 / 2 x$	DM1 A1	
		5	

Question	Answer	Marks	Guidance
11(iii)	EITHER: $\sin \theta=\frac{d}{1} \rightarrow d=\sin \theta$	(M1	Where θ is angle between $A B$ and the x-axis
	gradient of $A B=1 / 2 \Rightarrow \tan \theta=1 / 2 \Rightarrow \theta=26.5(7)^{\circ}$	B1	
	$d=\sin 26.5(7)^{\circ}=0.45 \quad\left(\text { or } \frac{1}{\sqrt{5}}\right)$	A1)	
	OR1: Perpendicular through O has equation $y=-2 x$	(M1	
	Intersection with $A B: \quad-2 x=1 / 2 x-1 / 2 \rightarrow\left(\frac{1}{5}, \frac{-2}{5}\right)$	A1	
	$d=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=0.45\left(\text { or } \frac{1}{\sqrt{5}}\right)$	A1)	
	OR2: Perpendicular through $(2,1)$ has equation $y=-2 x+5$	(M1	
	Intersection with $A B:-2 x+5=1 / 2 x-1 / 2 \rightarrow\left(\frac{11}{5}, \frac{3}{5}\right)$	A1	
	$d=\sqrt{\left(\frac{1}{5}\right)^{2}+\left(\frac{2}{5}\right)^{2}}=0.45($ or $1 / \sqrt{ } 5)$	A1)	

Question	Answer	Marks	Guidance
11 (iii)	OR3:	(B1	
	$\Delta O A C$ has area $\frac{1}{4}\left[\right.$ where $\left.C=\left(0,-\frac{1}{2}\right)\right]$	M1 A1)	
	$\frac{1}{2} \times \frac{\sqrt{5}}{2} \times d=\frac{1}{4} \rightarrow d=\frac{1}{\sqrt{5}}$	3	

